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Abstract 

We present a review of the Coish model for a non-metric world the points of which are 
coordinatised by elements from a finite field. The model is brought up to date by 
introducing recently determined results on the irreducible representations of the special 
linear group over a finite field due to Tanaka. 

1. Introduction 

Of all discrete models two particular cases separate themselves out  as special. 
One is the gaussian integer approach to the discrete integral lat t ice due to 
Schild ( t 9 4 9 )  and the other is the Coish model  (Coish, 1959; Shapiro, 1960; 
Joos, 1964; Ahmavaara, 1965-66).  They stand apart  because they are truely 
non-metric models which have been developed to a point  when we can con- 
sider the possibili ty of  constructing physical theories on them. In the following 
sections we provide a review of  the Coish model which follows roughly its 
historical development up to 1964. Then, in a final section, we t ry  to bring the 
model  up to date by  observing that  certain mathematical  results, unknown in 
1964, have since become available and allow us to complete the model.  The 
missing mathematical  results were the representations o fSL(2 ,  GF(p)), the 
special linear group over the Galois field o f  order p ,  and did not  become avail- 
able until 1967 [11-12] .  The dimensions of  the irreducible representations 
found by  Tanaka for SL(2, Gf(p) )  are ½(p - 1), (p  - 1) ,p ,  ½(p + 1), (p  + 1) 
and so there are no low dimensional irreducible representations at all. This 
means that  i f  we make the normal group dynamical  interpretat ion of the 
dimension as connected with spin we arrive at the unfortunate conclusion that 
there can be no low spin particles. This would seem to rule the model  out  on 
physical grounds provided we maintain this interpretat ion.  However, the 
model  remains of  great didactic value and of  considerable aesthetic appeal. 

2. The Ordering 

Coish observes that  many of  the problems encountered in physics result 
from the use o f  an infinite ground field. He decides to investigate the possi- 

Copyright © 1974 Plenum Publishing Company Limited. No part of this publication may 
be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic mechanical, photocopying, microfilming, recording or otherwise, without 
written permission of Plenum Publishing Company Limited. 

26 369 



370 HEDLEY C. MORRIS 

bflity of  an event space in which the four coordinates are not drawn from the 
real number field as usual but from a ring. This ring he terms the world ring. 
Of the many possibilities he chooses the simplest, a finite field. These are all 
classified and are simply GF(p n) where GF(p n) is the field of integers mod (pn) 
and n an integer. What must be done is to find such a finite field, a sufficiently 
large portion of which is 'like' the real number system. We must f ~  in the gap 
between 10 - la  and 1027. 

By "like the real number system' we mean that such a subset must be tran- 
sitively ordered, a very non-trivial constraint. The general problem of finite 
geometries which can be made to approximate the Euclidean plane so closely 
as may be desired was considered in detail by Jarnfelt (1951) and 
Kustaanheimo (1950). Clearly there is no difficulty in finding enough points 
from a field GF(p) provided p is chosen large enough. In fact to fill in the 
range 10-1a-1027 a prime p ~ 101°sl should prove sufficient. The ordering is 
the more difficult problem being due to the existence of only trivial valuations 
on finite fields. It is possible, however, to use a very similar construct to that 
used for the real numbers. Any multiplicative group G can be ordered if one 
can find an onto homomorphism z : G --> {1, - 1}. If  one then defines C + as 
kert and calls this the positive cone, the complement C-  is clearly isomorphic 
and we call this the negative cone. One can then define, 

a > b - a - b E C  + 

b < a = b - a @ C  - 

This is the case with the real numbers where C + C-  are the normal cones of 
positive and negative reals defined by the construction of the real number 
system. All that is required is some fundamental property which an element 
does or does not have without exception. 

In the case of a finite field GF(q) it can be shown that there exist elements 
p known as primitive elements processing property that the smallest power of 
p equal to the unit element is q - 1, p q -  1 = 1 (and there is no lesser power 
having this value). This being the case it is clear that p generates the multipli- 
cative group and consequently each element is a power either even or odd, ofp. 

The even-odd property is just what is required and so we have the homo- 
morphism 

"r(g) = 1 g = p2n 

= - 1  g=p2n+l  

Thus we define 

and 

aq > 0 g  iff aq EC~ + 

aq < 0q iff aq E C~- 

ag :> bq iff (a - b )q > Og 

aq < bq iff (a - b )q < Oq 
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The transitivity condition is more difficult. Consider for example, 

0q ~ lq ~ 2q 

This is transitively ordered if in addition to the trivial 

2 q - -  lq  = l q - - 0 q  = l q > 0 q  

also 

2q -- 0q = 2q )" 0q 

which for q = 5 is not the case. 
Kustaanheimo has shown that if the prime is chosen to have the form 

p= 8x I-I qi--1 
i=1 

where x is an odd integer and Hi qi the produce of  the first k-odd primes, then 
- Iq is 'negative' and 2 and the first k-odd primes are 'positive'. For such a 
prime the first N integers for large N can be transitively ordered and con- 
sequently the geometry would appear to be like ordinary Euclidean plane up 
to very large and down to very small distances. 

3. Lorentz Type Groups (Joos, 1964; Ahmavaara, 1965-66) 

I f  we are going to adopt the purely group theoretic approach to physics we 
must construct the relativity groups over this world ring GF(p) where p is a 
K-prime. Let us introduce the following notation which is standard for the 
subgroups of  the group of  transformations (A, a) : x -+ Ax + a where A is a 
Lorentz matrix with entries from GF(p). 

gF= {(x, a) l aE  GF(p)} Translation group 
= ((A, 0)1AgA= g} Lorentz group 
= {(A, 0)1AgA = +g} Coish group 
= {(A, a)  I A g A  = ga ~ GF(p)} Poincar6 group 
= {(A, a ) l A g A  = ga E GF(p) Dieudonne group 

~e= seo®J ~ =  ~ o ® J  

where 
J=- {1,P, T, PT} 

4. Reflections in the Light Cone 

Normally ~ = ~ a n d  ~ = 2 but for a finite field GF(p) Dieudonne has 
shown that this is not the case. The matrices A such that 

AgA = - g  
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can be generated by the Lorentz matrices together with a particular class of 
non-Lorentz matrices, e.g, 

[ )q 0q 0q -- l q l  

Ao = Oq - a q  ~q 0q 
0q ~q % 0q 

lq 0q 0q 0q 

where aq 2 + (3q 2 = - I q  

(Ao, 0) : x 2 -+ - x  2 

Since the light cone is preserved Coish maintains that these elements should be 
retained and tile physically relevant group the Dieudonne rather than the 
Poincar6 group. Such transformations (Ao, 0) are referred to as reflections in 
the light cone. We shall see that the existence of elements c~/,/3q s.t. aq 2 + [jq2 _-. 

- -  l q  is instrumental in the downfall of this model. 

5. The Unimodular Group 

We must now consider how the normal local isomorphisms to the unimodular 
groups become modified. 

The unimodular group is normally over the complex field and so we must 
first ask what we mean by 'complex' in the Galois case, 

Just as the complex field is an extension field of the reals we take the most 
natural analogue to be the extension field of  the GF(q)  by some 'non-square' 
element, For a K-prime - l q  is 'non square' so let us select it and construct the 
extension. If  we do this by giving the normal structure to GF(q)  x GF(q)  we 
obtain a field of q2 elements and by the uniqueness theorem for Galois fields 
we must have constructed GF(q2) .  

Every element z E GF(q 2) can thus be written 

z = x + iy where x,  y E GF(q)  and i z = - -  l q 

To define unimodular we need complex conjugation. We note that p = 4 / -  1 
for a K-prime with l an integer and it follows that 

i p = - - i  

Thus (x + iy) p = (x - iy)  which follows as a trivial application of Fermats 
theorem x q ~ x ( m o d  q). We are then led to def inef= zP 

Z p+I =ZZ = (X 2 +y2)  

But is should be realised that ~-z may not be 'square'. 
One constructs the matrix corresponding to the space-time event exactly as 

before, a ~ aoOo + oia i, and Lorentz transformations are induced in precisely 
the normal manner 

a-+ ~= b +ab 

There are, however, some interesting new features. 
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The operation of  'strong reversal' x ~ - x  for all the event coordinates 
becomes realised in this way also by matrices of  the type 

373 

where (~" =- ~-p+l = - l q  

Also it is clear that all the matrices of  the form wC~a( = 0 . . . .  p)  where w p+l = 1 
are mapped on to the same matrix. We shall have more to say about this 'gauge 
freedom' in a while. 

Finally we note that for the Coish group we require l[a ll p+ 1 _- _ 1, e.g. 

Once again this curious feature is related to the existence o f  an element 
f = ~ + ~ / ( -  lq)/~ for which ~'~ = %12 + ~q2 = - l q .  

6. Representations 

The most important point here is the nature of  the space on which the 
group is realised. On the one hand the most natural space might be thought 
to be GF(q 2) and we would have the modular representations of  the group. 
From the quantum mechanic outlook, however, such representations are 
probably ofl i t t te value. If  the I-filbert space formulation of  quantum mech- 
anics is correct, which may not be the case, and a ground field containing the 
real numbers as a subfield is sought, the choice of  small. It is a well-known 
result that there are only two other possibilities, the complex field and the 
quaternions. Naturally each has been considered as a field for the physical 
Hilbert space. The analyses of  Stueckelberg suggest that the real case is effec- 
tively equivalent to the complex case due to supersetection rules that operate. 
However, there is to our knowledge no physical reason against a quaternionic 
Hilbert space other than the fact that the complex space has so far seemed to 
be sufficient and one does not needlessly invite complication. We seek, then, 
unitary irreducible representations of  the relativity groups in a complex 
Hflbert space. It should be remembered that the quantities of  primary interest 
from the group-dynamical angle are the Clebsch-Gordon coefficients which 
wilt now be complex valued. 

7. The Complex Case 

Since we have, as in the usual case, semi-direct product structure we can use 
the theory of  induced representations. Let us commence with a reminder of  
how the theory is constructed. Let us denote the semi-direct product o f  two 
groups A and B where B is the invariant abetian subgroup, which is for us the 
translation group, by A ® B. We consider the dual space/) of characters of  B 
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which are maps X : B --> C having the property that 

X(bl +b2, p)=X(bl,P)X(bz,  P) tx(b,p)l  = 1 

where p parameterises/}. 
If a : b --> a(b) is the action of a E A on B which defines the semi-direct 

product there is a natural action of A on/} defined as follows: 

×(b, o~-Ip) : ×(~(b), p)) 

Making the orbit decomposition of/} associated with this action we get a well- 
defined division of B into invafiant subspaces. 

Let pi = Uaa(pi)a E A  be the orbits where i labels the equivalence classes. 
The 'stability group' of a point on an orbit pi is defined to be the subgroup 

Sp i = {a [x(b, p) = X(a(b ), p)) 

Given an I.U.R. ofB ® A in a Hilbert space H 

u :  (~, b) -~ V(~, b) 

we select a basis in which the subgroup U(1, b) = U(b) is completely reduced. 

U(b) ] p, 7) = x(b, p)[ p, 7) 

and ~, is a degeneracy parameter. 

U(b) U(o~ -a , 0) I p~) = U(e~ -a, 0)U(a (b))lp, V) 

= x(b, e~-lp)U((x -a, 0) lp, V) 

Thus an I.R. ofB ®A restricted to B contains all characters x(b, p) of one 
certain orbit pi. Clearly, 

U(p, 0)]p, 7) = ~, ]P, ~")Dv'~.(P) p E Sp i 
"t 

There is a (1-1) correspondence ofp  Cp i with the left cosets ofSp i inA. 
Selecting a representative c from each coset, where 

e (p, pi)pi = p 

~ves 

U(b)U(e(p, pi), O) i pi, 3,) = x(b, p)U(e(p, pi), O) [ pi, ~,) 

We can define the degeneracy parameter so that 

U(c(p, pi), 0)l j ,  ~'> = lp, ~') 

The element p (a, p) = c -1 (a(p), pi)ac(p, pi) E Sp i and so 

U(a, 0)]p, 7) = U(c(a(P),Pi), O)U(P(a,P))U(c-I(P, pi), 0)]p, 7> 
= ~, ]a(P), v')D.r'~,(p(e¢, p)) 

-g 
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Clearly U(a, 0) is irreducible i fD is. 
Summarising, 

U(1,b)lp, 7)=×(b,p)lp,'~) p e p  ~ 

U(a, O) lp, 3') = ~, l o~(p), 7')D~'v(p(a, p)) 
2¢ 

The problem has been reduced then to the representation theory of the various 
stability groups. This was so far as Ahmavaara could go in 1965 as the represen- 
tations over the complex field were not explicitly available at that time 
(Ahmavaara, 1965). He could only guess at their general structure. For 
example he noted that the complex values ofc ' (p) ,  the covering group of the 
Coish group required to produce single-valued representations, would have the 
form 

(Ap, O)-+exp[2rriQk/q + 1]D(S)(Ap, 0) k = 0 ,  1,2 . . . .  q 

where the matrices D(S)(A(p, 0)) give a univalent irreducible unitary represen- 
tation of the little Coish group e(p) for every value of s. This space has 
presented us in a very natural, intrinsic, way with a conserved quantum num- 
ber which can take integral multiples of a single value. This quantum number, 
interpreted naturally as charge, is one of the most charming features of this 
model. 

8. The New Representations 

Since the representations that Ahmavaara lacked have since become available 
this seems a suitable time to consider the consequences. In fact only the 
representation of SL(2, GF(p)) are available (Tanaka, 1967; Silberger, 1969) 
but the following facts show that these are sufficient for our immediate 
purpose. 

The matrices of SU(2, GF(p2)) have the form 

y = [ _ ~  /3] a, 13 E GF(p2 ) 

considered as a subgroup of GL(2, GF(pZ)), it is similar to the subgroup 
SL(2, GF(p)), e.g. the map r/: SU(2, GF(p2)) -" SL(2, GF(p)) defined by 

where 

1 
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and, as a result, 
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1 

1 
= 

and p is the non-square element which determines the extension of  GF(p) to 
GF(.p2), f~ = - 1  and 77 is an isomorphism. Consequently the two groups are 
isomorphic. 

Similarly we find that the subgroup of  matrices of  the form 

[ ~ 136~ ] a, t3 E GF([3) 

which we shall call SU(1, 1 ; GF(p2)), is also isomorphic to SL(2, GF(p)), e.g. 
the map 

: SU(1, I;  GF(p2)) -+ SL (2, GF(p)) 
defined by 

where 

and, as a result, 

1 

and as before ~ is an isomorphism. 
On examination of  the representations of  Tanaka (1967) and Silberger 

(1969) one finds, as mentioned previously, that there are no low-dimensional 
irreducible representations at all. This should be compared with the modular 
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representations of  SU(2, GF(p2))  to be found in Baltamelti & Blasi (1968). I t  
is surprising that  this space, seemingly so odd,  should fall only at a final fence 
and come close to being an acceptable model  at all. 
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